RR

SET-1

III B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 ANTENNAS AND WAVE PROPAGATION (COMMON TO ECE, ETM)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Prove that for a Hertizian dipole, the aperture area is $0.12\lambda^2$ and for a half wave dipole, it is $0.13\lambda^2$ and for an isotropic radiator, it is $0.08\lambda^2$. Explain relations used.
 - b) Define the following terms:
 - i) Gain.
 - ii) Directivity.
 - iii) Radiation resistance.
 - iv) Effective area.

[8+8]

- 2.a) Explain radiation from a quarter wave monopole with sketches.
 - b) For a broad cast antenna of 20m height at 750KHz. Claculate the expressions of far fields E and H and radiation resistance for an input excitation of 1mA current. [8+8]
- 3.a) Prove that the directivity can be improved by using a number of antennas in any broad side or end fire array.
 - b) Differentiate between binomial and uniform broad side arrays.

[8+8]

- 4.a) Write the design relations associated with Rhombic antenna. What are its applications?
 - b) Obtain an expression for the field strength of a wire type traveling wave antenna and sketch its pattern. [8+8]
- 5.a) Mention the frequency ranges of operation and applications of
 - i) Loop antenna
 - ii) Helical antenna
 - iii) Lens antenna.
 - b) Derive the EMF equation for a small loop antenna.

[12+4]

- 6.a) Discuss the characteristics of an optimum horn. Calculate its gain and directivity, when the aperture dimensions are $30 \text{cm} \times 41.1 \text{cm}$ at 10 GHz.
 - b) With neat sketch explain basic set up and requirements, for antenna pattern measurement. [8+8]
- 7.a) Explain about following terms
 - i) Maximum of MUF
 - ii) Optimum frequency
 - b) Discuss the significance and requirement for polarization in surface wave propagation? [8+8]

- 8. Discuss about the following
 - a) Duct formation and its significance
 - b) Shadow zone
 - c) Effective earth's radius
 - d) Free space path lodes

[16]

RR

SET-2

III B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 ANTENNAS AND WAVE PROPAGATION (COMMON TO ECE, ETM)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Prove that the directivity can be improved by using a number of antennas in any broad side or end fire array.
 - b) Differentiate between binomial and uniform broad side arrays.

[8+8]

- 2.a) Write the design relations associated with Rhombic antenna. What are its applications?
 - b) Obtain an expression for the field strength of a wire type traveling wave antenna and sketch its pattern. [8+8]
- 3.a) Mention the frequency ranges of operation and applications of
 - i) Loop antenna
 - ii) Helical antenna
 - iii) Lens antenna.
 - b) Derive the EMF equation for a small loop antenna.

[12+4]

- 4.a) Discuss the characteristics of an optimum horn. Calculate its gain and directivity, when the aperture dimensions are $30 \text{cm} \times 41.1 \text{cm}$ at 10 GHz.
 - b) With neat sketch explain basic set up and requirements, for antenna pattern measurement. [8+8]
- 5.a) Explain about following terms
 - i) Maximum of MUF
 - ii) Optimum frequency
 - b) Discuss the significance and requirement for polarization in surface wave propagation? [8+8]
- 6. Discuss about the following
 - a) Duct formation and its significance
 - b) Shadow zone
 - c) Effective earth's radius
 - d) Free space path lodes

[16]

- 7.a) Prove that for a Hertizian dipole, the aperture area is $0.12 \lambda^2$ and for a half wave dipole, it is $0.13 \lambda^2$ and for an isotropic radiator, it is $0.08 \lambda^2$. Explain relations used
 - b) Define the following terms:
 - i) Gain.
 - ii) Directivity.
 - iii) Radiation resistance.
 - iv) Effective area.

[8+8]

- 8.a) Explain radiation from a quarter wave monopole with sketches.
 - b) For a broad cast antenna of 20m height at 750KHz.Claculate the expressions of far fields E and H and radiation resistance for an input excitation of 1mA current. [8+8]

RR

SET-3

III B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 ANTENNAS AND WAVE PROPAGATION (COMMON TO ECE, ETM)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Mention the frequency ranges of operation and applications of
 - i) Loop antenna
 - ii) Helical antenna
 - iii) Lens antenna.
 - b) Derive the EMF equation for a small loop antenna.

[12+4]

- 2.a) Discuss the characteristics of an optimum horn. Calculate its gain and directivity, when the aperture dimensions are $30 \text{cm} \times 41.1 \text{cm}$ at 10 GHz.
 - b) With neat sketch explain basic set up and requirements, for antenna pattern measurement. [8+8]
- 3.a) Explain about following terms
 - i) Maximum of MUF
 - ii) Optimum frequency
 - b) Discuss the significance and requirement for polarization in surface wave propagation? [8+8]
- 4. Discuss about the following
 - a) Duct formation and its significance
 - b) Shadow zone
 - c) Effective earth's radius
 - d) Free space path lodes

[16]

- 5.a) Prove that for a Hertizian dipole, the aperture area is $0.12 \lambda^2$ and for a half wave dipole, it is $0.13 \lambda^2$ and for an isotropic radiator, it is $0.08 \lambda^2$. Explain relations used.
 - b) Define the following terms:
 - i) Gain.
 - ii) Directivity.
 - iii) Radiation resistance.
 - iv) Effective area.

[8+8]

- 6.a) Explain radiation from a quarter wave monopole with sketches.
 - b) For a broad cast antenna of 20m height at 750KHz.Claculate the expressions of far fields E and H and radiation resistance for an input excitation of 1mA current. [8+8]
- 7.a) Prove that the directivity can be improved by using a number of antennas in any broad side or end fire array.
 - b) Differentiate between binomial and uniform broad side arrays.

[8+8]

- 8.a) Write the design relations associated with Rhombic antenna. What are its applications?
 - b) Obtain an expression for the field strength of a wire type traveling wave antenna and sketch its pattern. [8+8]

RR

SET-4

III B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 ANTENNAS AND WAVE PROPAGATION (COMMON TO ECE, ETM)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Explain about following terms
 - i) Maximum of MUF
 - ii) Optimum frequency
 - b) Discuss the significance and requirement for polarization in surface wave propagation? [8+8]
- 2. Discuss about the following
 - a) Duct formation and its significance
 - b) Shadow zone
 - c) Effective earth's radius
 - d) Free space path lodes

[16]

- 3.a) Prove that for a Hertizian dipole, the aperture area is $0.12 \lambda^2$ and for a half wave dipole, it is $0.13 \lambda^2$ and for an isotropic radiator, it is $0.08 \lambda^2$. Explain relations used.
 - b) Define the following terms:
 - i) Gain.
 - ii) Directivity.
 - iii) Radiation resistance.
 - iv) Effective area.

[8+8]

- 4.a) Explain radiation from a quarter wave monopole with sketches.
 - b) For a broad cast antenna of 20m height at 750KHz.Claculate the expressions of far fields E and H and radiation resistance for an input excitation of 1mA current. [8+8]
- 5.a) Prove that the directivity can be improved by using a number of antennas in any broad side or end fire array.
 - b) Differentiate between binomial and uniform broad side arrays.

[8+8]

- 6.a) Write the design relations associated with Rhombic antenna. What are its applications?
 - b) Obtain an expression for the field strength of a wire type traveling wave antenna and sketch its pattern. [8+8]
- 7.a) Mention the frequency ranges of operation and applications of
 - i) Loop antenna
 - ii) Helical antenna
 - iii) Lens antenna.
 - b) Derive the EMF equation for a small loop antenna.

[12+4]

- 8.a) Discuss the characteristics of an optimum horn. Calculate its gain and directivity, when the aperture dimensions are $30\text{cm} \times 41.1\text{cm}$ at 10GHz.
 - b) With neat sketch explain basic set up and requirements, for antenna pattern measurement. [8+8]

